Aerospace Electronics, Cryogenic Systems,
and Space & Tactical Power

17682 Gothard Street, Ste. 201
Huntington Beach, CA 92647

CALL US: (714) 587-4628

Library

Compilation of West Coast Solutions videos and Selected Publications.

List of Selected Publications

  1. Kirkconnell, C.S., Murphy, J.B., and Freeman, J.J., “Experimental demonstration of cryocooler electronics with multiple mechanical cryocooler types,” SPIE Proceedings Volume 8353: Infrared Technology and Applications XXXVIII, p. 83531W-1 (2012).
  2. Conrad T.J., Ghiaasiaan S.M., Kirkconnell C.S., “Simulation of Boundary Layer Effects in the Pulse Tube of a Miniature Cryocooler”, Cryocoolers 16, p. 267 (2011).
  3. Kirkconnell C.S., Freeman J.J., Hon R.C., Jackson M.A., Kieffer M.H., “Modular Linear-Drive Cryocooler Electronics”, Cryocoolers 16, p. 667 (2011)
  4. Wolfe, D.W., Kirkconnell, C.S., Fleishchman, G.L., et al., “Jitter suppression techniques for mechanical cryocooler-induced disturbances”, Proc. of SPIE, vol. 7087, Remote Sensing System Engineering, (25 August 2008).
  5. Conrad, T.J., Landrum, E.C., Ghiaasiann, S.M., Kirkconnell, C.S., Crittenden, T., and Yorish, S., “CFD Modeling of Meso-Scale and Micro-Scale Pulse Tube Refrigerators”, Cryocoolers 15, p. 241 (2008).
  6. Muller, J.R., Johnson, L.G., Kirkconnell, C.S., and Hon, R., “Proton Conductive Membrane Compressor-Driven Pulse Tube Crycooler”, Cryocoolers 15, p. 299 (2008).
  7. Conrad, T.J., Landrum, E.C., Ghiaasiaan, S.M., Kirkconnell, C.S., Crittenden, T., and Yorish, S., “Anisotropic Hydrodynamic Parameters of Regenerator Materials Suitable for Miniature Cryocoolers”, Cryocoolers 15, p. 343 (2008).
  8. Zagarola, M.V., Breedlove, J.J., Kirkconnell, C.S., Russo, J.T., and Chiang, T., “Demonstration of a Two-Stage Turbo-Brayton Cryocooler for Space Applications”, Cryocoolers 15, p. 461 (2008).
  9. Hon, R.C., and Kirkconnell, C.S., “Raytheon dual-use long life cryocooler development,” Proc. of SPIE, vol. 6542, Infrared Technology and Applications XXXIII (14 May 2007).
  10. Cha, J., Ghiaasiaan, S., Harvey, J., Desai, P., and Kirkconnell, C., “Hydrodynamic parameters of pulse tube or Stirling cryocooler regenerators for periodic flow,” Cryocoolers 14, p. 397 (2007).
  11. Kirkconnell, C.S., “Aerospace cryocooler selection for optimum payload performance,” Cryocoolers 14, p. 605 (2007).
  12. Kirkconnell, C., Zagarola, M., and Russo, J., “Hybrid Stirling / reverse Brayton and multi-stage Brayton cryocoolers for space applications,” Adv. in Cryogenic Engineering, vol. 51B, p. 1489 (2006).
  13. Kirkconnell, Carl S., and Ross, Bradley A., “Raytheon dual-use long life cryocooler,” Proc. of SPIE, vol. 5783, Infrared Technology and Applications XXXI, (31 May 2005).
  14. Harvey, J., Kirkconnell, C., and Desai, P. “A fast and accurate regenerator numerical model,” Cryocoolers 13, p. 455 (2004).
  15. Kirkconnell, C.S., Harvey, J.P., and Desai, P.V., “Comparison of entropy generation rates in various multi-stage Stirling-class cryocooler configurations,” Adv. in Cryogenic Engineering, vol. 49B, p. 1519 (2004).
  16. Kirkconnell, C.S., and Curran, D.G.T., “Thermodynamic optimization of multi-stage cryogenic systems,” Adv. in Cryogenic Engineering, vol. 47B, p. 1123 (2002).
  17. Kirkconnell, C.S., and Price, K.D., “Thermodynamic optimization of multi-stage cryocoolers,” Cryocoolers 11, p. 69 (2001).
  18. Kirkconnell, C.S., and Price, K.D., “A novel multi-stage expander concept,” Cryocoolers 11, p. 259 (2001).
  19. Kirkconnell, C.S., and Colwell, G.T., “Parametric studies on non-linear pulse tube energy and mass flows,” Journal of Fluids Engineering, vol. 119, p. 831 (1997).
  20. Neitzel, Kirkconnell, and Little, “Transient, nonaxisymmetric modes in the instability of unsteady circular Couette flow. Laboratory and numerical experiments,” Phys. Fluids, vol. 2, p. 7 (1995).
  21. Cha, J. S., et al. “Multi-dimensional flow effects in pulse tube refrigerators.” Cryogenics 46.9 (2006): 658-665.
  22. Cha, J. S., S. M. Ghiaasiaan, and C. S. Kirkconnell. “Oscillatory flow in microporous media applied in pulse–tube and Stirling–cycle cryocooler regenerators.” Experimental thermal and fluid science 32.6 (2008): 1264-1278.
  23. Clearman, W. M., et al. “Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators.” Cryogenics 48.3-4 (2008): 112-121.
  24. Hon, Robert C., et al. “Long life seal and alignment system for small cryocoolers.” U.S. Patent No. 8,491,281. 23 Jul. 2013.
  25. Kirkconnell, C. S., et al. “High efficiency digital cooler electronics for aerospace applications.” Infrared Technology and Applications XL. Vol. 9070. International Society for Optics and Photonics, 2014.
  26. Landrum, E. C., et al. “Hydrodynamic parameters of mesh fillers relevant to miniature regenerative cryocoolers.” Cryogenics 50.6-7 (2010): 373-380.
  27. Kirkconnell, C. S., and K. D. Price. “Thermodynamic optimization of multi-stage cryocoolers.” Cryocoolers 11. Springer, Boston, MA, 2002. 69-78.
  28. Cha, J. S., et al. “CFD simulation of multi-dimensional effects in an Inertance tube pulse tube refrigerator.” Cryocoolers 13. Springer, Boston, MA, 2005. 285-292.
  29. Price, Kenneth D., Carl S. Kirkconnell, and Stephen C. Neville. “Single-fluid stirling/pulse tube hybrid expander.” U.S. Patent No. 6,167,707. 2 Jan. 2001.
  30. Kirkconnell, C. S. “Experimental investigation of a unique pulse tube expander design.” Cryocoolers 10. Springer, Boston, MA, 2002. 239-247.
  31. Price, K. D., and C. S. Kirkconnell. “Two stage hybrid cryocooler development.” Cryocoolers 12. Springer, Boston, MA, 2003. 233-239.
  32. Kirkconnell, C. S., et al. “Second generation Raytheon Stirling/pulse tube hybrid cold head design and performance.” Cryocoolers 13. Springer, Boston, MA, 2005. 127-131.
  33. Finch, A. T., K. D. Price, and C. S. Kirkconnell. “Raytheon Stirling/Pulse Tube Two‐Stage (RSP2) Cryocooler Advancements.” AIP Conference Proceedings. Vol. 710. No. 1. American Institute of Physics, 2004.
  34. Price, Kenneth D., and Carl S. Kirkconnell. “Apparatus and method for achieving temperature stability in a two-stage cryocooler.” U.S. Patent No. 6,330,800. 18 Dec. 2001.
  35. Rattray, Alan A., et al. “Cooling system using a pulse-tube expander.” U.S. Patent No. 5,647,219. 15 Jul. 1997.
  36. Kirkconnell, Carl S., et al. “Cryocooler with ambient temperature surge volume.” U.S. Patent No. 7,062,922. 20 Jun. 2006.
  37. Landrum, E. C., et al. “Effect of pressure on hydrodynamic parameters of several PTR regenerator fillers in Axial steady flow.” International cryocooler conference. 2009.
  38. Cha, J. S., S. M. Ghiaasiaan, and C. S. Kirkconnell. “Longitudinal hydraulic resistance Parameters of cryocooler and stirling Regenerators in periodic flow.” AIP Conference Proceedings. Vol. 985. No. 1. American Institute of Physics, 2008.
  39. Pruitt, Gerald R., Kenneth D. Price, and Carl S. Kirkconnell. “Expansion-nozzle cryogenic refrigeration system with reciprocating compressor.” U.S. Patent No. 7,089,750. 15 Aug. 2006.
  40. Yuan, Sidney W., et al. “Inertance tube and surge volume for pulse tube refrigerator.” U.S. Patent No. 8,302,410. 6 Nov. 2012.
  41. Kirkconnell, C. S., S. C. Soloski, and K. D. Price. “Experiments on the effects of pulse tube geometry on PTR performance.” Cryocoolers 9. Springer, Boston, MA, 1997. 285-293.
  42. Kirkconnell, Carl S., Ken J. Ciccarelli, and Abram Alaniz. “Multi-stage cryocooler with concentric second stage.” U.S. Patent No. 7,296,418. 20 Nov. 2007.
  43. Cha, Jeesung Jeff. CFD Simulation of multi-dimensional effects in inertance tube pulse tube cryocoolers. Diss. Georgia Institute of Technology, 2004.
  44. Kirkconnell, C. S., et al. “Development of a miniature Stirling cryocooler for LWIR small satellite applications.” Tri-Technology Device Refrigeration (TTDR) II. Vol. 10180. International Society for Optics and Photonics, 2017.
  45. Hon, R. C., C. S. Kirkconnell, and J. A. Shrago. “Raytheon RSP2 cryocooler low temperature testing and design enhancements.” AIP Conference Proceedings. Vol. 1218. No. 1. American Institute of Physics, 2010.
  46. Kirkconnell, Carl S., Gerald R. Pruitt, and Kenneth D. Price. “Pulse tube cooler with internal MEMS flow controller.” U.S. Patent No. 7,263,838. 4 Sep. 2007.
  47. Kirkconnell, C. S., et al. “Flight qualification testing of cryocooler electronics.” Cryocoolers 18 (2014): 339-349.
  48. Hon, R. C., C. S. Kirkconnell, and T. Roberts. “Raytheon dual-use cryocooler system development.” AIP Conference Proceedings. Vol. 985. No. 1. American Institute of Physics, 2008.
  49. Ogden, Robert R., et al. “Monitoring the health of a cryocooler.” U.S. Patent No. 8,794,016. 5 Aug. 2014.
  50. Cha, J. S., et al. “The impact of uncertainties associated with regenerator hydrodynamic closure parameters on the performance of inertance tube pulse tube cryocoolers.” AIP Conference Proceedings. Vol. 985. No. 1. American Institute of Physics, 2008.
  51. Harvey, Jeremy P., Prateen V. Desai, and Carl S. Kirkconnell. “A comparative evaluation of numerical models for cryocooler regenerators.” Cryocoolers 12. Springer, Boston, MA, 2003. 547-554.
  52. Kirkconnell, C. S., et al. “Raytheon Stirling/pulse tube cryocooler development.” AIP Conference Proceedings. Vol. 985. No. 1. American Institute of Physics, 2008.
  53. Kirkconnell, C. S., et al. “Low cost, lightweight space cryocoolers.” Cryocoolers 12. Springer, Boston, MA, 2003. 183-190.
  54. Kirkconnell, Carl S., et al. “Pulse tube expander having a porous plug phase shifter.” U.S. Patent No. 6,393,844. 28 May 2002.
  55. Kirkconnell, C. S., et al. “Design of a 4K hybrid Stirling/pulse tube cooler for tactical applications.” Cryocoolers 17.17 (2012): 25-31.
  56. Clearman, W. M., et al. “Longitudinal Hydraulic Resistance Parameters of Cryocooler and Stirling Regenerators in Steady Flow.” AIP Conference Proceedings. Vol. 985. No. 1. American Institute of Physics, 2008.
  57. Harvey, Jeremy P., et al. “Hybrid cryocooler with multiple passive stages.” U.S. Patent Application No. 12/882,617.
  58. Hon, Robert C., et al. “Cryocooler with moving piston and moving cylinder.” U.S. Patent No. 8,490,414. 23 Jul. 2013.
  59. Price, Kenneth D., Carl S. Kirkconnell, and Ken J. Ciccarelli. “Stirling/pulse tube hybrid cryocooler with gas flow shunt.” U.S. Patent No. 7,093,449. 22 Aug. 2006.
  60. Kirkconnell, C. S., and G. T. Colwell. “A One-Dimensional Model of High-Frequency Pulse Tube Heat and Mass Flows.” Cryocoolers 9. Springer, Boston, MA, 1997. 335-344.
  61. Kirkconnell, C. S., A. Ghavami, and S. M. Ghiaasiaan. “Computational fluid dynamics study of displacer” shuttle loss” in miniature Stirling cryocoolers.” Tri-Technology Device Refrigeration (TTDR) III. Vol. 10626. International Society for Optics and Phot
  62. Kirkconnell, Carl S., Michael C. Barr, and Lowell A. Bellis. “High efficiency compact linear cryocooler.” U.S. Patent No. 10,088,203. 2 Oct. 2018.
  63. Kirkconnell, C. S. “Experiments on the Thermodynamic Performance of a “U-Tube” Pulse Tube Expander.” Advances in cryogenic engineering. Springer, Boston, MA, 1998. 1973-1981.
  64. Kirkconnell, C. S., R. C. Hon, and T. Roberts. “Raytheon Stirling/pulse tube cryocooler maturation programs.” Cryocoolers 15.15 (2009): 31-37.
  65. Hon, Robert C., et al. “Noncontinuous resonant position feedback system.” U.S. Patent No. 7,684,955. 23 Mar. 2010.
  66. Kirkconnell, Carl Scott. Numerical analysis of the mass flow and thermal behavior in high-frequency pulse tubes. Diss. Georgia Institute of Technology, 1995.
  67. Mulcahey, T. I., et al. “Parametric Numerical Study of Off-Axis Pulse Tube Losses.” Cryocoolers 18 (2014): 253-261.
  68. Kirkconnell, Carl S., and Kenneth D. Price. “Integration of Oxford Class Cryocoolers with Thermal Detectors,“.” NASA/GSFC Thermal Detectors Workshop in College Park, MD. 2003.
  69. Conrad, T. J., et al. “Impact of Small Regenerator Structural Flaws on the Performance of Miniature Pulse Tube Cryocoolers.” Georgia Institute of Technology, 2008.
  70. Landrum, E. C., et al. “Effect of Frequency on Hydrodynamic Parameters of Mesh Fillers in Oscillatory Flow.” Georgia Institute of Technology, 2008.
  71. Kirkconnell, Carl S., and Gene T. Colwell. “Numerical analysis of non-linear pulse tube flows.” American Society of Mechanical Engineers(Paper). 11 (1996): 1996.
  72. Kirkconnell, C. S., R. C. Hon, and T. Roberts. “Raytheon Stirling/PulseTube Cryocooler.”
  73. Schroth, A. E., M. Sahimi, and C. S. Kirkconnell. “Numerical Simulations of Fluid Flow and Heat Transfer in Pulse Tubes.” Cryocoolers 13. Springer, Boston, MA, 2005. 303-312.
  74. Jambusaria, M. H., et al. “Microsat cryocooler system.” Infrared Technology and Applications XLI. Vol. 9451. International Society for Optics and Photonics, 2015.
  75. Conrad, T. J., et al. “CFD Modeling of Meso-Scale and Micro.”
  76. Kirkconnell, C. S., and D. G. T. Curran. “03/00808 Sealing ducts in large commercial buildings with aerosolized sealant particles.”
  77. Kirkconnell, C. S. “A cryocooler in your laptop computer? Maybe.” Electronics Cooling 11 (2008).
  78. Harvey, J. P., C. S. Kirkconnell, and P. V. Desai. “Regenerator performance evaluation in a pulse tube cryocooler.” Advances in cryogenic engineering 45 (2000): 373-381.
  79. Kirkconnell, C. S. “Price. KD,’Thermodynamic Optimization of Multi-Stage Cryocoolers.” Cryocoolers II, Kluwer Academic/Plenum Publishers. New York (2001). pp. 69 78.
  80. Kirkconnell, C. S., and B. A. Ross. “Raytheon Cryocoolers.” MCALC-IV, San Diego (2003).
  81. Moody, LS Shaw JB Murphy EA, AL Lisiecki CS Kirkconnell MJ Ellis, and T. T. Luong. “Development of a Miniature Cryocooler System for Cubesats. url: https://cryocoolerorg. wildapricot. org/resources/Documents.” C18/044. pdf.(accessed: May 27, 2018).
  82. Kirkconnell, Carl Scott. Experiments on the stability characteristics of an unsteady circular couette flow. Diss. Georgia Institute of Technology, 1992.
  83. Ellis, M. J., et al. “Development of a miniature cryocooler system for cubesats.” Cryocoolers 18 (2014): 329-337.
  84. Conrad, Ted, et al. “The effect of component junction tapering on miniature cryocooler performance.” AIP Conference Proceedings. Vol. 1434. No. 1. American Institute of Physics, 2012.
  85. Kirkconnell, C. S., J. P. Harvey, and P. V. Desai. “PULSE TUBE JT AND HEAT EXCHANGER MODELING AND PERFORMANCE ISSUES-Comparison of Entropy Generation Rates in Various Multi-Stage Stirling-Class Cryocooler Configurations.” Advances in Cryogenic Engineering 49 (2004): 1519-1526.
  86. Hon, R. C., and C. S. Kirkconnell. “Raytheon dual-use long-life cryocooler development [6542-77].” PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING. Vol. 6542. No. 2. International Society for Optical Engineering; 1999, 2007.
  87. Kirkconnell, Carl, and Volkan Ozguz. “High-frequency, low-temperature regenerative heat exchanger.” U.S. Patent Application No. 10/189,366.
  88. Johnson, Lonnie, and Carl Kirkconnell. “Solid state cryocooler.” U.S. Patent Application No. 11/130,424.
  89. Harvey, Jeremy, et al. “Hybrid cryocooler with multiple passive stages.” U.S. Patent Application No. 11/432,058.
  90. Kirkconnell, Carl, et al. “Role of size on the relative importance of fluid dynamic losses in linear cryocoolers.” IOP Conference Series: Materials Science and Engineering. Vol. 278. No. 1. IOP Publishing, 2017.
  91. Ghavami, Ali, Carl Kirkconnell, and S. Mostafa Ghiaasiaan. “Sensitivity analysis on miniaturize pulse tube boundary layer losses.” IOP Conference Series: Materials Science and Engineering. Vol. 755. No. 1. IOP Publishing, 2020.
  92. Mahannah, Sean, and Carl Kirkconnell. “System and method for extraction of cannabis oil from cannabis plant materials.” U.S. Patent No. 10,722,815. 28 Jul. 2020.
  93. Nunes, Miguel, et al. “Analysis of Cryocooler Exported Vibrations for Mitigation Strategies in a 6U CubeSat Imaging Payload.” (2019).
  94. Kirkconnell, Carl. “Extremely Miniaturized Cryogenic Cooler for SmallSat Infrared Payloads.” (2019).
  95. Ghavami, A., et al. “Analysis of a Novel Micro Structured Regenerator Filler.” (2018).
  96. Veprik, A., et al. “Adaptation of the low-cost and low-power tactical split Stirling cryogenic cooler for aerospace applications.” Infrared Technology and Applications XXXVII. Vol. 8012. International Society for Optics and Photonics, 2011.
  97. Zagarola, M., J. Sanders, and C. Kirkconnell. “A Cryogenic Heat Transport System for Space-Borne Gimbaled Instruments.”
  98. Kesler, C., et al. “Design and Implementation of a Ground Test Configuration for a Space Infrared Sensor.”
  99. Schroth, A., C. Kirkconnell, and M. Sahimi. “Numerical Model for Pulse Tubes Using Method of Lines.” Cryocoolers 12. Springer, Boston, MA, 2003. 379-387.
  100. Baldwin, M., Ghavami, A., Ghiaasiaan, S.M. and Majumdar, A., 2021. Pool boiling in liquid hydrogen, liquid methane and liquid oxygen: A review of available data and predictive tools. Cryogenics, p.103240.
  101. Ghavami, A., Fang, T. and Ghiaasiaan, S.M., 2020, March. Entropy generation in the woven mesh regenerator filler of cryocoolers. In IOP Conference Series: Materials Science and Engineering (Vol. 755, No. 1, p. 012064). IOP Publishing.
  102. Fang, T., Ghavami, A. and Ghiaasiaan, S.M., 2020, March. A Second Law Study of the Regenerators in Cryocoolers based on Pore-level Analysis of Entropy Generation. In IOP Conference Series: Materials Science and Engineering (Vol. 755, No. 1, p. 012049). IO

Videos

Results... Delivered.

We look forward to a conversation with you to discuss how we can leverage our expertise to solve your toughest problems.